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Figure 1: Why we need inferential properties 

used in process simulation. The models tend to be complex, 
proprietary, and more demanding of technical support. While, for 
some applications, they can outperform the regression-based type, 
they form a small minority of installed inferentials. In the next 
four articles we focus on regression.

THE PROBLEM
Regression analysis takes historically collected process data to 
develop a correlation between the property we wish to control 
(the dependent variable) and process measurements of flow, 
temperature, and pressure (the independent variables). While most 
inferentials predict the property of a product, most commonly on 
distillation columns, there are other applications. Common are 
those that measure catalyst activity and reactor conversion. One 
could also consider the more advanced compressor anti-surge 
techniques, that we will cover in a future article, as inferentials.

There are a range of platforms available – including Aspen IQ, 
Honeywell’s Profit Sensor Pro, and Shell’s RQE. These are installed 
in the process computer interfaced to the distributed control 
system (DCS). They are used to both develop and host the infer-
ential. But much can be accomplished using the standard features 
of Excel and then installing the inferential within the DCS. The 
ease with which multidimensional regression can now be applied 
can lead inexperienced engineers into developing inferentials 
that are insufficiently accurate. Indeed, audits completed by the 
author's consultancy would suggest that well over half of those 
installed would achieve greater profit improvement by being 

T
O PLAGIARISE from a much longer quotation by Lord 
Kelvin, if you cannot measure it, you cannot improve 
it. But direct measurement, by an on-stream 
analyser, can be expensive, unreliable, and slow. 

While analyser technology is improving and, 
importantly, more attention is paid to the sample system design, 
inferential properties will always have a place – if only because 
they respond far quicker than most analysers. Indeed, to ensure 
earlier correction of off-spec production, an inferential will 
usually be installed in addition to the analyser. The analyser’s 
role then becomes one of trimming the inferential calculation 
to maintain its accuracy. Figure 1 illustrates the benefit of this 
approach. Analysers tend to exhibit long delay, or deadtime (q). In 
our example, the deadtime-to-lag ratio (q/t) is 8. This is typical of 
a chromatograph on a distillation column overhead product. As a 
base case we define 100% as the amount of off-spec production 
following a process disturbance, assuming an optimally tuned 
product quality controller. If the installation of an inferential 
halves the deadtime, then the controller can be more tightly tuned 
and off-spec production reduced by 25%.

THE CHOICE
There are two types of inferential. The first-principle type 
employs semi-rigorous modelling techniques, akin to those 
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Inferential properties, or soft sensors, are key to modern process control. Myke 
King explains regression analysis as a precursor to their design
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QUICK READ
	 Inferentials vs. Analysers: Inferentials are faster and 
cheaper than on-stream analysers and are often used 
together to enhance product quality control

	Regression and R²: Regression analysis correlates process 
data with product properties. R² is commonly used but has 
limitations; adjusted R² accounts for these issues

	Data Quality: The reliability of inferentials depends on 
data variation; insufficient data can lead to inaccurate 
models. Adjusted R² and conditioning inputs can improve 
accuracy

REDUCING q BY 12 MINS REDUCES 
OFF-SPEC PRODUCTION BY 25%

t = 3 MINS
q = 24 MINS
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Figure 3: Minimising the sum of squaresFigure 2: Calculation of penalty function

decommissioned! So, the purpose of these articles is to take the 
reader through the development methodology, dispelling any 
myths about how accuracy is tested and maintained – and to show 
how performance should be properly monitored and improved.

THE BASICS
Let us take a very simple example, as shown in Figure 2. We 
have three points plotted as xy coordinates – (2,3), (3,9), and 
(7,12). To perform the regression, we first determine the mean 
of both x and y; so (x̅,y̅) is (4,8). From this we can calculate the 
total sum of squares (TSS), shown as the shaded area:

As Figure 3 shows, we then rotate the line passing through 
(x̅,y̅) to minimise this sum. We could use Excel to show that the 
equation of the line of best fit is:

Giving:

The shaded area is now the residual sum of squares (RSS):

It is this value that regression analysis has minimised. To 
assess how well the equation fits the data we determine the 
explained sum of squares (ESS):

(2,3) (2,3)

(3,9) (3,9)

(7,12) (7,12)

The fraction of the variance explained is the coefficient of 
determination: 

This is a measure of how well the predicted ŷ matches the 
actual value of y. But is one of several definitions of R2. That 
more commonly used was defined by English biostatistician 
and mathematician Karl Pearson as:

The value determined by this method is also 0.75. This is because 
we are applying it to the data used to develop the inferential. 
If applied to monitor the reliability of a previously developed 
inferential, the two definitions will give slightly different 
results. So, which should we use? The first definition might 
appear more intuitive, but it suffers a major drawback. If we 
were to shuffle the order of the actual values of y, leaving that 
of the predicted values unchanged, then R2 does not change. 
It’s basically telling us that, provided today’s inferential agrees 
with the actual property that might have been measured a few 
days ago (or in the future), then it’s good to use in a control 
scheme! The second definition does properly reflect the time 
series nature of process data.

Why do we base the penalty function on the dependent 
variable (y)? By doing so, we are assuming that its measure-
ment is perfect, and we want to get our prediction as close 
as possible. But it may be that we have greater confidence in 
the measurement of the independent variable (x) and want to 
stay as close as possible to its value. In which case we should 
minimise:

x̅ = 4 x̅ = 4

y = 8 y = 8

y y

x x
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Figure 4: Minimising sum of perpendicular distances

This would give the line of best fit as:

Or maybe we have equal confidence in the measurements of both 
x and y – in which case we might minimise the sum of the squares 
of the perpendicular distances, as shown in Figure 4. For example:

This gives us:

So, does R2 tell us which of the three equations is the best fit? 
Well, no; perhaps surprisingly it has the same value for all three. 
In fact, we can choose any linear function of x and we will get the 
same result. R2 tells us only how closely x and y are correlated; it 
tells us nothing about the reliability of the inferential.

This issue is only apparent for inferentials based on a single 
independent variable. But this input can be a compound variable 
derived from two or more measurements. For example, the 
composition of a distillation product might be inferred from a 
pressure-compensated tray temperature (see TCE 996) or maybe 
reflux ratio. There are many such suspect inferentials in place.

We can use weighting factors (w) to select the penalty function. 
For example, if we have two independent variables, our inferential 
would take the form:

To determine the a coefficients we would minimise:

Table 1 shows the impact of the weighting factors. Values of w are 
not restricted to 0 or 1. For example, if we felt that x2 was more 

reliably measured than x1 we might assign a value to w2 that 
is higher than that for w1. Another limitation of R2 is that we 
cannot use it to choose the best values for the weighting coef-
ficients. The way it is defined means that it will always result 
in a value of 1 for w0 and 0 for all the others.

AVOIDING PITFALLS
Including additional measurements in the inferential leads us 
to another problem with the use of R2. Imagine we develop a 
correlation that includes m independent variables, and we use 
n records of historical data. If n is equal to m + 1, then it would 
be possible to choose values for the a coefficients such that 
we obtain a perfect fit to the data. The most trivial example 
would be to plot y against x using only two sets of data. The 
correlation would pass exactly through the two points. While 
extreme, it illustrates that, if too few records are regressed, the 
estimate of R2 will give an optimistic assessment of the corre-
lation. The solution is to determine the adjusted R2:

This equation can be used to assess whether we have included 
enough data in the regression. If significantly increasing n has 
little impact on R̅ 2, then we can deduce that n is sufficiently 
large. 

Now, to illustrate another problem, imagine we have 
developed an inferential using only x1 and we wish to explore 
whether the addition of x2 would be beneficial. In fact, no 
matter what that measurement might be (even if it is a random 
number!) the value of R2 will increase. This has caught out 
many an inexperienced engineer who has “thrown” data at 
regression analysis and naively developed an inferential that, 
when installed, generates a largely random result. Again, 
using adjusted R2 helps resolve this. If we find that increas-
ing m reduces R̅ 2 then the additional input has no place being 
included in the inferential.

We can also check whether an input has been overlooked 
– by plotting the error in the inferential against each unused 
input. If this shows any correlation, then the input should be 
included. The same technique can be applied to those inputs 
already included. Figure 5 shows an example of column 
pressure that is already included in a distillation inferen-
tial. While accurate at two pressures, its shape indicates that 

(2,3)

(3,9)

(7,12)

x̅ = 4

y = 8

y

x

Table 1: Attitudes to investment in process control

ts
RESIDUAL SUM OF SQUARES (RSS) wo w1 w2

y direction 1 0 0

x1 direction 0 1 0

x2 direction 0 0 1

perpendicular distances 1 1 1
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some non-linear function of pressure should be considered. 
Commonly, as we saw in TCE 996, using its logarithm will 
improve accuracy.

Finally, we have to address the scatter of the data used. 
Process operators are generally good at keeping a product on 
grade by making manual adjustments, based on the result of a 
regular laboratory test. This means the variation in the process 
data may be insufficient to develop a reliable correlation. Let us 
imagine we wish to explore the reliability of an inferential that 
predicts the C3 content (Q) of the butane product from a lique-
fied petroleum gas (LPG) splitter, based on a tray temperature 
(T) in the lower section of the column:

From the data used to develop the inferential we first calculate:

For the feasible range of values of T we plot Q̂  ̂and Q̂ ± E:

Figure 6 shows the result – with inclusion of the original 
process data (shown as individual points). The solid line is the 
predicted composition, while the dashed lines represent the 
envelope within which we are 95% confident the solid line lies. 
So, if the tray temperature were 92°C, we would have very little 
confidence in the predicted composition of 4% C3. There simply 
is not enough variation in the data used to build the inferential. 
We would need to conduct test runs to collect data well away 
from the target operation.

From the equations above, it would appear the check on 
scatter can only be applied if the inferential includes a single 

independent. However, we can condition each independent to 
take account of the variation in the others. For example, if our 
inferential has three inputs and we want to assess the scatter of 
x2 then we first condition it as:

NEXT ISSUE
In the next issue we will show that, if used to monitor the 
accuracy of an inferential, R2 can give very misleading results. 
We will, of course, offer an alternative approach.

Myke King CEng FIChemE is director of Whitehouse Consulting, an 
independent advisor covering all aspects of process control. The 
topics featured in this series are covered in greater detail in his book 
Process Control – A Practical Approach, published by Wiley in 2016

Disclaimer: This article is provided for guidance alone. Expert 
engineering advice should be sought before application.

Figure 5: Need for non-linear function
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Figure 6: Poor data scatter
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