FEATURE SERIES: PRACTICAL PROCESS CONTROL

20: Regression

2 Analysis

Inferential properties, or soft sensors, are key to modern process control. Myke
King explains regression analysis as a precursor to their design

0 PLAGIARISE from a much longer quotation by Lord
Kelvin, if you cannot measure it, you cannot improve
it. But direct measurement, by an on-stream
analyser, can be expensive, unreliable, and slow.
While analyser technology is improving and,
importantly, more attention is paid to the sample system design,
inferential properties will always have a place - if only because
they respond far quicker than most analysers. Indeed, to ensure
earlier correction of off-spec production, an inferential will
usually be installed in addition to the analyser. The analyser’s
role then becomes one of trimming the inferential calculation
to maintain its accuracy. Figure 1 illustrates the benefit of this
approach. Analysers tend to exhibit long delay, or deadtime (6). In
our example, the deadtime-to-lag ratio (0x) is 8. This is typical of
a chromatograph on a distillation column overhead product. As a
base case we define 100% as the amount of off-spec production
following a process disturbance, assuming an optimally tuned
product quality controller. If the installation of an inferential
halves the deadtime, then the controller can be more tightly tuned
and off-spec production reduced by 25%.

THE CHOICE
There are two types of inferential. The first-principle type
employs semi-rigorous modelling techniques, akin to those

Figure 1: Why we need inferential properties
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Y Inferentials vs. Analysers: Inferentials are faster and
cheaper than on-stream analysers and are often used
together to enhance product quality control

D Regression and R2: Regression analysis correlates process
data with product properties. R2 is commonly used but has
limitations; adjusted R2 accounts for these issues

) Data Quality: The reliability of inferentials depends on
data variation; insufficient data can lead to inaccurate
models. Adjusted R2? and conditioning inputs can improve
accuracy

used in process simulation. The models tend to be complex,
proprietary, and more demanding of technical support. While, for
some applications, they can outperform the regression-based type,
they form a small minority of installed inferentials. In the next
four articles we focus on regression.

THE PROBLEM

Regression analysis takes historically collected process data to
develop a correlation between the property we wish to control
(the dependent variable) and process measurements of flow,
temperature, and pressure (the independent variables). While most
inferentials predict the property of a product, most commonly on
distillation columns, there are other applications. Common are
those that measure catalyst activity and reactor conversion. One
could also consider the more advanced compressor anti-surge
techniques, that we will cover in a future article, as inferentials.

There are a range of platforms available - including Aspen IQ,
Honeywell’s Profit Sensor Pro, and Shell’s RQE. These are installed
in the process computer interfaced to the distributed control
system (DCS). They are used to both develop and host the infer-
ential. But much can be accomplished using the standard features
of Excel and then installing the inferential within the DCS. The
ease with which multidimensional regression can now be applied
can lead inexperienced engineers into developing inferentials
that are insufficiently accurate. Indeed, audits completed by the
author's consultancy would suggest that well over half of those
installed would achieve greater profit improvement by being



decommissioned! So, the purpose of these articles is to take the
reader through the development methodology, dispelling any
myths about how accuracy is tested and maintained — and to show
how performance should be properly monitored and improved.

THE BASICS
Let us take a very simple example, as shown in Figure 2. We
have three points plotted as xy coordinates - (2,3), (3,9), and
(7,12). To perform the regression, we first determine the mean
of both x and y; so (xy) is (4,8). From this we can calculate the
total sum of squares (TSS), shown as the shaded area:

3
1SS =) (=7 =(3 =87+ (9 -8)2 + (12 8)* = 42

i=1

As Figure 3 shows, we then rotate the line passing through
(xy) to minimise this sum. We could use Excel to show that the
equation of the line of best fit is:

y=15x+2
Giving:

=5 ¥, =65 P53 =12.5

The shaded area is now the residual sum of squares (RSS):

3
RSS = Z(yi —9)2 =3 =52+ (9—6.5)? + (12 — 12.5)2 = 10.5

i=1

It is this value that regression analysis has minimised. To
assess how well the equation fits the data we determine the
explained sum of squares (ESS):

3
ESS = ) (9~ 7)? = (5~ 8)* + (65— 8)* + (125 - 8) = 315

i=1

or ESS =TSS—RSS
Figure 2: Calculation of penalty function
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The fraction of the variance explained is the coefficient of
determination:
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This is a measure of how well the predicted 7 matches the
actual value of y. But is one of several definitions of R2. That
more commonly used was defined by English biostatistician
and mathematician Karl Pearson as:

R? = @ = NG — PI?
X0 —PEE@ —9)?

The value determined by this method is also 0.75. This is because
we are applying it to the data used to develop the inferential.
If applied to monitor the reliability of a previously developed
inferential, the two definitions will give slightly different
results. So, which should we use? The first definition might
appear more intuitive, but it suffers a major drawback. If we
were to shuffle the order of the actual values of y, leaving that
of the predicted values unchanged, then R? does not change.
It’s basically telling us that, provided today’s inferential agrees
with the actual property that might have been measured a few
days ago (or in the future), then it’s good to use in a control
scheme! The second definition does properly reflect the time
series nature of process data.

Why do we base the penalty function on the dependent
variable (y)? By doing so, we are assuming that its measure-
ment is perfect, and we want to get our prediction as close
as possible. But it may be that we have greater confidence in
the measurement of the independent variable (x) and want to
stay as close as possible to its value. In which case we should

minimise: s
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Figure 3: Minimising the sum of squares




This would give the line of best fit as:
y=2x

Or maybe we have equal confidence in the measurements of both
x and y — in which case we might minimise the sum of the squares

of the perpendicular distances, as shown in Figure 4. For example:
3

Dl - 202 + i = 9)°]
i=1
This gives us:

$ = 1.63x + 1.48

So, does R? tell us which of the three equations is the best fit?
Well, no; perhaps surprisingly it has the same value for all three.
In fact, we can choose any linear function of x and we will get the
same result. R? tells us only how closely x and y are correlated; it
tells us nothing about the reliability of the inferential.

This issue is only apparent for inferentials based on a single
independent variable. But this input can be a compound variable
derived from two or more measurements. For example, the
composition of a distillation product might be inferred from a
pressure-compensated tray temperature (see TCE 996) or maybe
reflux ratio. There are many such suspect inferentials in place.

We can use weighting factors (w) to select the penalty function.
For example, if we have two independent variables, our inferential
would take the form:

Y =ag+ aix; +azx,

To determine the a coefficients we would minimise:

<W0+ z+ )Z()’L YL

Table 1 shows the impact of the weighting factors. Values of w are
not restricted to 0 or 1. For example, if we felt that x, was more

Figure 4: Minimising sum of perpendicular distances
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reliably measured than x, we might assign a value to w, that
is higher than that for w. Another limitation of R? is that we
cannot use it to choose the best values for the weighting coef-
ficients. The way it is defined means that it will always result
in a value of 1 for w, and o for all the others.

AVOIDING PITFALLS

Including additional measurements in the inferential leads us
to another problem with the use of R%. Imagine we develop a
correlation that includes m independent variables, and we use
n records of historical data. If n is equal to m + 1, then it would
be possible to choose values for the a coefficients such that
we obtain a perfect fit to the data. The most trivial example
would be to plot y against x using only two sets of data. The
correlation would pass exactly through the two points. While
extreme, it illustrates that, if too few records are regressed, the
estimate of R? will give an optimistic assessment of the corre-
lation. The solution is to determine the adjusted R

_ n—1
R2=1—(1—R2)n_ n=m+2

m-—1
This equation can be used to assess whether we have included
enough data in the regression. If significantly increasing n has
little impact on R?, then we can deduce that n is sufficiently
large.

Now, to illustrate another problem, imagine we have
developed an inferential using only x, and we wish to explore
whether the addition of x, would be beneficial. In fact, no
matter what that measurement might be (even if it is a random
number!) the value of R? will increase. This has caught out
many an inexperienced engineer who has “thrown” data at
regression analysis and naively developed an inferential that,
when installed, generates a largely random result. Again,
using adjusted R? helps resolve this. If we find that increas-
ing m reduces R? then the additional input has no place being
included in the inferential.

We can also check whether an input has been overlooked
- by plotting the error in the inferential against each unused
input. If this shows any correlation, then the input should be
included. The same technique can be applied to those inputs
already included. Figure 5 shows an example of column
pressure that is already included in a distillation inferen-
tial. While accurate at two pressures, its shape indicates that



some non-linear function of pressure should be considered.
Commonly, as we saw in TCE 996, using its logarithm will
improve accuracy.

Finally, we have to address the scatter of the data used.
Process operators are generally good at keeping a product on
grade by making manual adjustments, based on the result of a
regular laboratory test. This means the variation in the process
data may be insufficient to develop a reliable correlation. Let us
imagine we wish to explore the reliability of an inferential that
predicts the C, content (Q) of the butane product from a lique-
fied petroleum gas (LPG) splitter, based on a tray temperature
(T) in the lower section of the column:

Q=ay+a,T

From the data used to develop the inferential we first calculate:

T=23 X=) @ -T7

For the feasible range of values of T we plot 0"and Q'+ E:

v=> (-0

2y 1 (T=T)?
_n—Z[E-I- X ]

Figure 6 shows the result — with inclusion of the original
process data (shown as individual points). The solid line is the
predicted composition, while the dashed lines represent the
envelope within which we are 95% confident the solid line lies.
So, if the tray temperature were 92°C, we would have very little
confidence in the predicted composition of 4% C.. There simply
is not enough variation in the data used to build the inferential.
We would need to conduct test runs to collect data well away
from the target operation.

From the equations above, it would appear the check on
scatter can only be applied if the inferential includes a single

Figure 5: Need for non-linear function
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independent. However, we can condition each independent to
take account of the variation in the others. For example, if our
inferential has three inputs and we want to assess the scatter of
x, then we first condition it as:

a, _ as -
Xz =Xy +—(xq — %) + — (x3 — X3)
az az

NEXT ISSUE
In the next issue we will show that, if used to monitor the
accuracy of an inferential, R* can give very misleading results.
We will, of course, offer an alternative approach.

Myke King CEng FIChemE is director of Whitehouse Consulting, an
independent advisor covering all aspects of process control. The
topics featured in this series are covered in greater detail in his book
Process Control — A Practical Approach, published by Wiley in 2016

Disclaimer: This article is provided for guidance alone. Expert
engineering advice should be sought before application.
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