FEATURE SERIES: PRACTICAL PROCESS CONTROL

21: Validating

9 Inferentials

In the previous article we covered the application of regression analysis to
the development of inferential properties. Here we focus on their validation,

prior to commissioning

EVELOPERS of inferentials tend to demonstrate

their reliability by plotting a line graph of the

inferred and measured property. Figure 1 shows

an example. It might appear that the inferential

is reasonable at following the measured property,
but it can be something of an illusion.

Figure 2 plots exactly the same data, but as a scatter chart.
So, for example, if our inferential reports a value of 50%, the
true value might be anywhere between 30 and 70%. However,
this does not mean it is without value, remembering that the
main role of the inferential is to give an early indication of a

Figure 1: Line graph
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Figure 2: Scatter chart
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QUICK READ

Y Accuracy vs. Precision: Precision (low random error) is
measured by R2, but accuracy (low bias error) is what truly
matters for inferentials

) Inferential Performance: The performance index (¢) is
a better measure than R2, reflecting both prediction error
and measured property variance. A negative ¢ suggests the
inferential is ineffective

) Re-engineering Triggers: Monitor inferential accuracy
over time; re-engineer if errors consistently exceed the
confidence interval or fail to meet accuracy standards

change. Provided it changes in the right direction, it might
still be of use, even if only approximately correct. Figure 3
shows that, in this example, the predicted direction of 90% of
the changes is correct. And, when it is incorrect (outside the
shaded area), it tends to be for the smaller changes.

WE NEED ACCURACY, NOT PRECISION
The main reason why so many poorly engineered inferentials
are installed is the misplaced faith that engineers put in R? as
a good measure of accuracy. It is not. To understand this, we
need to separate precision from accuracy. A precise measurement

Figure 3: Reliability of direction of change
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Figure 4: US tech company share price
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Figure 5: Inferring tomorrow's share price
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has little random error but can have a large bias error. So, a
measurement which is consistently wrong by the same amount
is precise. An accurate measurement has little bias error but can
have a large random error. So, a variable measurement which,
on average is correct, is accurate. R? is a measure of precision
and so, if close to 1, tells us that there is little random error but
nothing about accuracy.

We can illustrate this with a real-world example. Figure
4 plots the stock price of a well-known US tech company.
Those around at the time might remember the company and
the issues it had to deal with. Figure 5 shows the results of a
stock price predictor developed by yours truly. It’s R? is 0.989
- apparently very close to perfection. More recently the stock
price approached US$250. So why am I not writing this article
on my private island? The answer is illustrated by just one
point in Figure 5, where the predicted value was around US$50,
and the actual price was US$30. It failed to predict the fall that
took place in July 1998.

So why is this relevant to predicting product quality? Well,
we often install an inferential because the existing quality
measurement is a laboratory result that is reported maybe once
per day. We want the inferential to give us a much earlier indi-
cation of a significant change in quality. If it fails to do so, even

ifinfrequently, it is of little value. Similarly, an inferential which
accurately predicts an unchanging property adds nothing.
Whatever parameter we choose to monitor performance must
take account of not only how close the inferential matches the
measured property, but also how much the measured property
changes. One which does this is the performance index (¢) where:

variance of prediction error 2 ror

=1-——— =1-
¢ variance of measured property ogroperty

To understand how this parameter works, consider first that we
have a perfect inferential:

sop=1

2 —
Oerror = 0

Now consider an inferential which, on average is correct but
never changes (which is clearly of no value). For example, we
might predict that the inferential stays at its average value:

Vi=y SO Olrror = Ugroperty and ¢ =0

Now imagine that the measured property is on target and
never changes. In this case any error in the inferential causes
the controller to wrongly take corrective action — worsening
quality control:

2 2
Oerror > Oproperty and ¢ <0

So, if we were monitoring ¢ for a working quality controller, we
would want to disable the control if ¢ became negative.
Justifying improved control is usually performed by calcu-
lating the benefit captured by halving ¢, . If we assume that
our control scheme is perfect and the only deviation from target
comes from the random error in the quality prediction then, to

capture the benefits:

Oerror < 0.50pr0perty andso ¢ = 0.75

Because controllers aren’t perfect, we need a significantly
higher value for ¢ — typically in excess of 0.85.

COMPARISON WITH R?
In the last article we showed that, if we changed the coefficients
in a single-input linear inferential, R? remained unchanged.
Consider one of the equations we fitted to the points (2,3), (3,9),
and (7,12):

y=15x+2

This predicts (x,5) as (2,5), (3,6.5) and (7,12.5), giving a value
of 0.75 for both R? and ¢. If we double the coefficient of x, the
prediction becomes (2,8), (3,11), and (7,23). R? remains the same,
while ¢ becomes significantly negative (-2.57) telling us very
clearly to avoid using the inferential.

Similarly, if we were to calculate ¢ for the share price predic-
tor we obtain the value of 0.989 - exactly the same as R2. But
differences appear if we plot the parameters as rolling values
based, for example, on the last 30 records. Figure 6 shows that



Figure 6: Rolling Pearson R?

1.0
08}
L 06
o
0.4

0.2

0

JUN 97 DEC 97 JUN 98 DEC 98 JUN 99 DEC 99

R? shows significant variation but never approaches o. It tells us
that the correlation always exists but not whether it is reliable
enough to be used.

Before plotting ¢ we make a minor change to its calculation.
In our example, the cause of each prediction error is a change
in the actual, rather than predicted, price. So, both o,  and s,

change and ¢ therefore changes very little. The solution is to
So, a better definition is:

erty

use the previous value of o

property*

¢ =1- (Uezrror)n

(O-z?roperty)n_l

Trending this value, as Figure 7, shows several occasions on
which ¢ is negative. If this were an inferential, the composition
controller would (on five occasions) take corrective action that
would worsen process performance. Despite its almost perfect
precision, its lack of accuracy would lead us to reject its design.

MONITORING PERFORMANCE
If we use ¢ to monitor the performance of an installed infer-
ential, we must further modify its calculation. Let us imagine

Figure 7: Rolling performance index
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Figure 8: Monitoring inferential performance
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that, at design stage, ¢ was 0.75. In other words, o, was half
of 6, .., Also imagine that, on commissioning, our control-
ler is perfect and achieves the objective of halving o, ... As a
result, ¢ will reduce to 0 — falsely indicating that the inferential
has no value. To resolve this, we use a constant value for s, .,
chosen as its value prior to commissioning the control scheme.
Figure 8 shows the result, had our share price predictor been in
service. It clearly indicates when the failure occurred. However,
despite the problem being corrected for the next prediction, ¢
remains low for 30 days. Once a problem is resolved we need to
delete the offending record(s) from the rolling calculation.

In addition to detecting inaccuracy as soon as possible, we
should monitor performance over a longer period to deter-
mine whether the inferential should be re-engineered — maybe
because of some change to the process. We monitor this by
recording the number of occasions, within a defined time-
frame, that the inferential is incorrect. From its development,
we know the expected standard deviation of the error (g, ). If
the error falls outside the 95% confidence interval (ie 1.96¢,, )
then we designate this a failure.

The Excel function BINOM.INV(n, p, P) gives the expected

number of successes for a defined probability (P) in n




Figure 9: Binomial distribution
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independent trials where p is the probability of success in each
trial. We might consider a year of daily checks on accuracy and
so n is 365. We expect the inferential to be correct 95% of the
time, so p is 0.95. We want to know how many of the trials will
fall inside the 95% confidence interval, ie inside the range of P
between 0.025 and 0.975. See Figure 9.

For example:

BINOM.INV(365, 0.95, 0.025) = 338
BINOM.INV/(365, 0.95, 0.975) = 354

These tell us to expect the inferential to be correct between 338
and 354 days. If the actual number is less than 338 then re-en-
gineering should be considered. If it greater than 354 then the
inferential is performing better than expected and perhaps the
confidence interval should be reduced to make a more demand-
ing check on accuracy. l

NEXT ISSUE
In the next issue, we'll cover the pitfalls of automatically
updating an inferential based on the latest laboratory result
or on-stream analyser measurement.

Myke King CEng FIChemE is director of Whitehouse Consulting, an
independent advisor covering all aspects of process control. The
topics featured in this series are covered in greater detail in his book
Process Control — A Practical Approach, published by Wiley in 2016
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