FEATURE SERIES: PRACTICAL PROCESS CONTROL

5 22: Monitoring

In the last article we looked at the assessment of a potential inferential.
Here we cover techniques for monitoring its performance and automatically

updating it to maintain its accuracy

HILE we may have installed an effective

inferential, this will not usually replace

the existing quality measurement -

whether it be laboratory sampling or an

on-stream analyser. So, we can use these
measurements to check the accuracy of the inferential and
potentially correct it automatically.

First, let us consider the use of a laboratory result for
the property Q. The issue is that the result is reported some
considerable time after the sample is taken. To validate the
inferential, we need to know its value at the time of sampling.
While sample time is recorded in many LIMS (laboratory
information management systems), it is often the scheduled
rather than the actual time. Processes are rarely perfectly at
steady state and so comparison between laboratory and infer-
ential becomes unreliable. This, of course, is an issue when
developing an inferential. However, the difference is that in
using a large number of records, such time-stamping errors
are averaged close to zero. While they will cause a reduction
in R? they will have less effect on accuracy. The problem arises
if today’s result is very different from the installed inferen-
tial. The solution, of course is reliable time-stamping. This
is commonplace in highly regulated processes, such as phar-
maceuticals. Sampling points include a limit switch which is
activated when a sample is taken. The time is logged automat-
ically and a scannable sample label printed — which also helps
avoid sample mix-ups.

Traditionally, a bias term in the inferential is updated to
force it to agree with the latest laboratory result. However, we
recognise that the laboratory is also prone to error and so we
take a cautious approach. We introduce the parameter K, typi-
cally set to around 0.35, so that the correction ramps in over
several samples:

E= Qinferential - Qlaboratory

bias,., = bias, —KE,  where0 <K <1

Fortunately, much of the industry now recognises this
approach is flawed. Any random error in Q... will be added
to the bias and so appear in the corrected inferential. The
variance of the error will therefore be increased by the factor
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Clearly unsuitable for random error, this technique is impor-
tant in dealing with bias errors. Such might occur if there is a
change to the process — for example, in feed composition or
catalyst activity. So how do we separate bias error from random
error?

Table 1 records 20 consecutive laboratory results alongside
the value of the inferential at sample time. The final column
is the cumulative sum of errors (CUSUM). This is plotted as
Figure 1. If the error were random then the CUSUM trend would
be a noisy horizontal line. The slope of the trend is the bias
error. In this example, this was determined using the last six
records and applied as a correction to the inferential’s bias
term. While waiting for six results might seem an excessive
delay in applying an update, the method it replaces (with K set
to 0.35) would have implemented only 92% of the correction.



Table 1: Laboratory versus inferential

SAMPLE | INFERENTIAL | LABORATORY | ERROR CUSUM
1

5.08 £4.81 0.27 0.27

2 4.97 479 0.18 0.45

3 4.93 5.25 -0.32 0.13

4 5.05 5.02 0.03 0.16

5 5.20 £4.86 034 0.50

6 5.55 4.96 0.59 1.09

7 5.22 5.08 0.14 1.23

8 5.52 5.17 0.35 1.58

9 5.56 4.98 0.58 2.16

10 5.56 £4.90 0.67 2.82
1 5.64 4.86 0.78 3.61
12 £4.80 4.98 -0.18 3.43
13 5.16 4,94 0.23 3.65
14 4.95 5.17 -0.22 3.43
15 4.93 5.01 -0.09 335
16 4.95 5.17 -0.22 3.13
17 5.17 5.09 0.08 3.21
18 5.17 5.16 0.01 3.22
19 5.16 475 0.41 3.63
20 4.84, 4.81 0.03 3.66

And it’s likely that we could make the correction after fewer
samples.

Without going into the proof, for what might seem an
obvious result, if we use the slope of the CUSUM for the last
three samples:

bias,., = bias, — K(0.5E, + 0.5E,,_;)

Less obviously, using the last four samples:

bias, 41 = bias, — K(0.3E,, + 0.4E,_, + 0.3E,,_,)

Figure 1: Use of CUSUM
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Figure 2: Dynamic compensation
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Inclusion of the term K may be unnecessary — certainly its value
can now approach 1. In fact, its value is better optimised as part
of the regression analysis. Note that, in determining future
corrections, the bias correction also has to be applied retro-
spectively to those predictions which will be used to determine
the next correction.

ON-STREAM ANALYSER
If installed, we can also use an on-stream analyser to update
the inferential. While the inferential and the analyser might
agree at steady state, they will not do so during a disturbance.
This is because the dynamic response of the inferential will
be faster than that of the analyser (otherwise the inferential
has little purpose!). We could wait until steady state is reached
before updating but a better approach is to apply dynamic
compensation. We covered the technique as part of our article
on feedforward control (see TCE 999). We step-test to obtain the
dynamics of both analyser and inferential. As shown in Figure
2, using a deadtime and lead-lag algorithm delays the infer-
ential measurement so that it has the same dynamics as the
analyser. Figure 3 shows the configuration. It includes a filter
parameter (P). For continuous analysers this can be set close
to 1. Discontinuous analysers produce a staircase trend, so a

Figure 3: Analyser updating
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value of 0.7 or less is advisable to prevent this adversely affect-
ing the inferential. Or a better approach is to use the analyser
read-now contact to trigger an update.

While we must take account of analyser dynamics when
monitoring and updating an inferential, they also influence
the precision to which we can develop an inferential. One
approach is to be sure that the data are collected at steady
state. This may limit the number of records available and
might miss those occasions where the process is away from
target — so reducing data scatter. There is, however, a simple
way of including dynamics in the regression analysis. Consid-
ering, first, a single-input inferential, we regress the equation:

Yn=0Qy+a1Yp—1 + A2Xn—(6/ts) + A3Xn—(6/ts)-1

This equation is effectively the same as the FOPDT (first order
plus deadtime) model that we developed in TCE 981. To apply it,
imagine we have a spreadsheet with the dependent variabley in
the first column and the independent variable x in the second.
We first insert a column between the two and copy into it the
values of y — displaced downwards one row. The column will

Figure 4: Inferential input dynamics (case 1)

now contain y_,. We’ll show later that this helps us identify the
lag (). To obtain the deadtime (0), we similarly copy x into the
next column, displaced by one row, to give x_,. We repeat this for
several columns to include x_,, x_, etc — adding enough columns
to cover the likely deadtime. We then delete any incomplete
rows from the beginning and end of the spreadsheet.

We use regression to identify the best three-input inferen-
tial. If there is a clear dynamic model, the best inputs will be
those in the equation above. In addition to y_,, it should include
values of x that are one data collection interval (ts) apart. These
allow for 6 not being an exact multiple of ts (if a, is close to 0,
then it is). The values of 6 and < are not required for the infer-
ential itself but will be of use when we later install analyser
updating. They are calculated from:

[ 0 as —ts
6= (—) + ts T=
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While we include dynamic compensation when developing the
inferential, we do not in the installed inferential. We want it to
give the earliest possible indication of any change, not have the
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Figure 5: Inferential input dynamics (case 2)
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same dynamics as the analyser. The implemented inferential
would therefore be:

agy a, + as

y

T1-aq, 1-q

This technique can equally be applied when developing an in-
ferential that includes more than one independent variable —
but only if the dynamics are similar between the analyser and
each input. If they are not, then consideration should be given
to reducing the number of inputs.

DIFFICULT DYNAMICS
Figure 4 shows a near-perfect inferential, in that it accurately
predicts the property at steady state. But its dynamic behav-
iour would give considerable controller tuning problems. The
inverse response is the result of x, changing sometime after
the other inputs. For example, a disturbance at the top of a
distillation column would more quickly affect tray tempera-
tures nearer the top than one nearer the bottom. In theory it
would be possible to lag the other inputs to match those of x,
but is unlikely to be practical. Figure 5 shows the same infer-
ential responding to a different disturbance. This might be at

the bottom of our column and so affect x, first. The inferen-
tial now shows very different dynamics. Since we don’t know
the source of the disturbance, or if there are several occurring
simultaneously, dynamic compensation is not practical. In this
case, we would sacrifice some accuracy by omitting x, from the
inferential. As the figures show, this now shows much simpler
dynamic behaviour. [l

NEXT ISSUE
In the next issue we'll present a number of examples of
inferential development, aimed at illustrating some of the
key issues.

Myke King CEng FIChemE is director of Whitehouse Consulting, an
independent advisor covering all aspects of process control. The
topics featured in this series are covered in greater detail in his book
Process Control — A Practical Approach, published by Wiley in 2016

Disclaimer: This article is provided for guidance alone. Expert
engineering advice should be sought before application.
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