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23: Inferentials
v 1n Action

The last three articles described the principles underlying the development
and installation of inferential properties. Here, Myke King presents
examples, selected to illustrate some key issues

NE OF the problems in developing an inferential

is deciding if any of the data should be rejected

as outliers. While there are several statisti-

cal methods designed to help with this, there is

always the risk that valid data are omitted. This
could result in the inferential becoming unreliable when it
is most needed — when the operating conditions shift away
from typical values.

We include here, as an example, the development of an infer-
ential on a LPG splitter. Figure 1 shows the requirement to infer
the C, content (y) of the propane product. Among the potential
independent variables are temperatures (x, and x,) measured on
trays 15 and 17. Table 1 shows a selection of data collected from
the process. Regression gives two possible single-input infer-
entials, depending on which tray temperature we use:

§ = —56.41+0.9258x; R?=10.792
$=-28.11+0.5498x, R?=0.977

Figure 1: LPG splitter inferential
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Y Handling Outliers: Rejecting valid data can make inferen-
tials unreliable; engineering judgment ensures meaningful
variable selection

Y Variable Transformations: Non-linear transformations
improve accuracy and robustness, preventing unrealistic
predictions

Y Process Control Integration: Inferentials should align
with multivariable predictive controller (MPC) and use
setpoints to avoid unnecessary corrections

Table 1: Process data

5.34 66.5 60.8
3.79 64.9 58.0
4.28 66.4 59.4
6.46 67.4 62.5
3.41 66.2 57.6
5.26 66.3 60.5
5.91 67.2 61.9
5.86 67.2 62.1

5.43 66.8 61.1

3.90 65.1 58.2
4.4 65.6 59.0
413 65.4 58.7
4.80 66.2 60.1

3.48 64.3 57.0
5.08 66.4 60.4
6.61 67.7 62.8
5.70 66.9 61.5
5.08 66.4 60.5
437 65.9 59.5
3.67 64.6 57.5




Key to a successful inferential is ensuring it makes engi-
neering sense. This is why development should fall into the
remit of an experienced chemical engineer! The engineer would
first ensure that variables are only included if they would be
expected to affect the predicted property (we showed in TCE
1,005 how the inclusion of even a random measurement might
appear to improve accuracy). Secondly, we check that their
coefficients have the correct sign. In this case we would expect
the C, content of the propane to increase with tray tempera-
ture and so the positive coefficients make sense. We also must
justify, from an engineering standpoint, choosing the inferen-
tial with the higher R2 In this case we would expect a closer
correlation with the temperature higher up the column.

The next consideration is whether additional independent
variables should be included. In this case, should we include
both temperatures? Our first reaction might be not to do so.
They are on almost adjacent trays and will therefore be highly
correlated. If one temperature can be represented as an exact
linear function of the other, then its inclusion will not improve
accuracy. Figure 2 appears to confirm that this is the case -
apart from two points which we might consider as outliers.
However, if we include them in the regression, we obtain:

$ = —20.51 —0.2107x, + 0.6555x,  R2 = 0.982
Examination of the coefficients might, at first, give us cause for
concern — since that of x, is now negative. But, before rejecting
the correlation, we should attempt to understand the cause. In
this case, we can rewrite the equation as:

$ = —20.51—0.2107(x; — x,) + 0.4448x,

Figure 3 shows two temperature profiles — one for less pure
and the other for almost pure products. It shows how (x, -x,) is a

Figure 2: Correlated tray temperatures
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Figure 3: Measure of separation
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measure of component separation. The greater the temperature
difference, the more closely the boiling points of the products
approach those of the pure components. So, the C, content of
the propane reduces — explaining the negative coefficient.

It is important that the temperatures are close together.
Installed on trays wide apart they could still be a valuable input
to the inferential but will cause problematic dynamics. For
example, Figure 4 shows the result of a disturbance occurring
near the base of the column (say a change in reboiler duty) where
the temperature of the lower tray changes before the other.

Incidentally, inclusion of temperature difference is usually
beneficial on most columns. But rarely are multiple temper-
atures installed, and they are too costly to retrofit. A lesson
learnt in involving experienced control engineers in process
design - identifying the need during process design would add
little to cost and might capture substantial benefits.

Figure 4: Tray temperature dynamics
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TRANSFORMATIONS

While we generally use linear regression analysis to develop
inferentials, we can selectively first apply non-linear trans-
formations to both the dependent and independent variables.
For example, rather than trying to predict the concentra-
tion of an impurity (C) in a distillation production we instead
predict log(C). For high-purity columns, this helps linearise
very non-linear behaviour. It also has the advantage that the
predicted concentration cannot be negative. If we do predict
log(C) we apply the inverse transformation to the result before
displaying it to the operator.

We can also apply transformations to the independent vari-
ables. One example we covered (see TCE 996) was using the
logarithm of absolute pressure in inferentials that rely on
a pressure compensated temperature (PCT). PCT is also an
example of a compound variable. Although appearing in the
inferential as a single input, it is derived from two raw measure-
ments — column pressure and tray temperature. Other common
compound variables are flow-to-feed ratios, where the flow
might be a product or a utility stream. The use of the ratio helps
make the inferential immune to changes in feed flow.

Reactor conversion will generally depend on residence time.
We would then see the benefit of using the reciprocal of the feed
flow. Indeed, liquid hourly space velocity (LHSV), defined as the
hourly volumetric flow per unit volume of catalyst, will often
appear in an inferential as LHSV-.

REACTOR TEMPERATURE
A process, common throughout the oil industry is the hydro-
treater — often used to produce diesel. Raw feedstock is reacted
with hydrogen at a high temperature over a catalyst. Feed-
stock derived by fractionating crude oil compromises saturated
(paraffinic) hydrocarbons. Components produced by cracking
larger paraffinic molecules are unsaturated (olefinic). Feedstock
for biodiesel production is also largely olefinic. The purpose
of hydrotreating is to first remove sulfur compounds (mainly
mercaptans). Secondly, olefinic components are saturated to
meet the required bromine number (a measure of unsaturated
hydrocarbon content). Reactor temperature is the key variable in
determining product composition. Usually this is controlled by
manipulating the fuel flow to the upstream fired heater. When

While we could implement the
inferential as defined, a more
elegant solution is to install an EIT
controller, particularly if it is the
only input to the inferential. This
will maintain the EIT constant as

the composition of the feed changes

processing paraffins there will be a small temperature drop
across the reactor but, due to the exothermic nature of hydro-
genation, there will be a substantial increase when processing
olefins. The mixture of feed components can change. When
it does so, the reactor temperature profile will change and so
affect product composition. The residence time through the
process is typically around 90 minutes. An inferential property
measurement, based on reactor conditions, would give an indi-
cation of change much sooner than an analyser on the reactor
product. The key (and often only) input to the inferential is the
equivalent isothermal temperature (EIT). As its name suggests,
this is the temperature. If the same throughout the reactor,
that would give the same conversion as the current temper-
ature profile. It is defined as the weighted average of RIT and
ROT - the reactor inlet and outlet temperatures:

EIT = xRIT + (1 — x)ROT

We determine x by developing the inferential for the product
quality:

Q =ay+ a;RIT + a,ROT +az. . .
a1
x=—
a; +a,

While we could implement the inferential as defined, a more
elegant solution is to install an EIT controller, as shown in
Figure 5 — particularly if it is the only input to the inferential.
This will maintain the EIT constant as the composition of the
feed changes.

The equivalent for multi-bed reactors is the weighted average
bed temperature (WABT), where each bed inlet temperature (T) is

Figure 5: EIT controller
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weighted depending on the quantity (w) of catalyst in each bed:

wi Ty +wyo Ty +wiTs+
WABT = 1 212 313

wy +w, +ws +

Again, rather than use the weight of catalyst, the coefficients
would be determined by regressing Q against T, T,, T,etc. The
first reactor inlet temperature (T,) controller would be replaced
with a WABT (weighted average bed temperature) controller.

In many reactors the catalyst deactivates over time. In the
case of the hydrotreater, the EIT must be gradually increased
to meet the product quality target. When reaching its upper
limit, the catalyst is either replaced or regenerated. During the
run length the correlation between product quality and EIT will
change and so the inferential will need regular updates to its bias
term. Rather than accept this, we should strive to build into the
inferential some measure of catalyst deactivation. One approach
would be to maintain a record of the total feed processed since
the catalyst was fresh. Regressing with this as one of the inputs
would likely remove the need for bias updating.

CONSISTENCY WITH MPC
Inferential properties are frequently control variables (CVs) of
a multivariable predictive controller (MPC). Included in the
dynamic models used by the controller are the steady state
process gains (Kij) between the CVs and the manipulated vari-
ables (MVs). Table 2 shows the gain matrix for such a controller.
It predicts the steady state from:

CVy = KiaMVy + Ki,MVy + . .. Ky,MV,, + bias,

CVy = KyyMVy + KpouMVy + . . . KMV, + bias,

etc
If Cv, is an inferred property then, if linear, it will have the form:

Q=a1x1 +ax, + ... ayxy, +aq

It is highly likely that some of the x variables will also be MVs.
If all are MVs, then it is important that the two predictions are
consistent, ie a, must be the same as K, etc.

Table 2: MPC gain matrix

m1 m2 e mn

Figure 6: Use of setpoint versus process variable
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If an input to the inferential calculation is a variable which is
controlled with a proportional-integral-derivative (PID) control-
ler, we have the option of using either the PID setpoint (SP) or its
process variable (PV). The use of SP has advantages. Firstly, it will
be noise-free. But more important is that the inferential will not
change if there is a process disturbance that will soon be corrected
by the PID controller. Were it do so, it would make unnecessary
corrections that would ultimately have to be reversed. Figure
6 shows a typical arrangement. A quality controller, say on a
distillation column, is cascaded to a tray temperature controller
(TC) which, in turn, is cascaded to a flow controller (FC), perhaps
on reboiler steam. The problem is that, if the operator changes
the SP of the quality controller, it will immediately change the SP
of the TC, which will immediately change the SP of the FC. Since
these SPs are inputs to the inferential calculation, the process
variable (PV) of the quality controller will change immediately.
As far as the quality controller is concerned, the process has no
deadtime (0) and no lag (r). Controller tuning calculations are
based on the 6/ ratio, which would be indeterminate. It may not
be possible to tune the controller, even by trial-and-error, to give
satisfactory control. One solution would be to filter the quality
controller’s PV to introduce a lag (x > 0). Of course, this might
be counter-productive — undermining the advantage of rapidly
responding inferential. Or we may have to abandon the use of SPs
as inputs and instead use PVs. [l

NEXT ISSUE
In the next issue we'll pick up on some remaining issues
covering the control of distillation columns. We'll start by
showing how important cut and fractionation are to meeting
composition targets and describe how tray temperature
control achieves this.

Myke King CEng FIChemE is director of Whitehouse Consulting, an
independent advisor covering all aspects of process control. The
topics featured in this series are covered in greater detail in his book
Process Control — A Practical Approach, published by Wiley in 2016

Disclaimer: This article is provided for guidance alone. Expert
engineering advice should be sought before application.
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